ارزیابی سریع خسارتِ بلایای طبیعی مبتنی بر اطلاعات جغرافیایی داوطلبانه منطقۀ مورد مطالعه: زمین‌لرزۀ مسجدسلیمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیا و عضو هیئت علمی دانشگاه علوم انتظامی امین

2 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی

10.22111/j10.22111.2021.6020

چکیده

 




تخمین خسارت بر اساس مدلهای از پیش تعیین شده و بازدید میدانی از ان جهت که نیازمند صرف زمان و هزینه زیادی است، با کاستی های زیادی روبه رو است. ازاین‌رو در این تحقیق سعی بر توسعه یک سیستم مبتنی بر وب جهت جمع‌آوری اطلاعات جغرافیایی داوطلبانه در هنگام وقوع زلزله شده است که کاربران در زمان زلزله با به اشتراک‌گذاری سریع اطلاعات مربوط به خسارت مالی و جانی واردشده به خود یا سایر افراد، حجم گسترده‌ای از اطلاعات را برای تحلیل در اختیار تیم مدیریت بحران قرار می‌دهند. در این تحقیق برای ساخت نقشه طبقه بندی شده خسارت، بر اساس میزان خسارت گزارش‌شده توسط مردم مورد استفاده قرارگرفته است. برای ارزیابی نتایج، این سیستم در شهر مسجد سلیمان که اخیرا زمین لرزه در آن اتفاق افتاده است، پیاده‌سازی شد و 132 نفر در جمع‌آوری اطلاعات شرکت کردند. صحت سنجی اطلاعات با استفاده از نقشه خسارت انجام گرفت و سرعت و دقت صحت سنجی به میزان چشم گیری افزایش پیداکرد و براساس این روش 65/76% اطلاعات صحیح در نظر گرفته شدند. نتایج این تحقیق نشان می دهد که استفاده از اطلاعات جغرافیایی داوطلبانه باعث بهبود 83% سرعت تخمین خسارت و کاهش 75% هزینه ها در مقایسه با روش های موجود می شود. علاوه براین نتایج نشان میدهد که پیاده‌سازی این سیستم‌ها در هر سازمانی علاوه بر افزایش چشمگیر سرعت جمع‌آوری اطلاعات، کاهش زمان تحلیل اطلاعات بر اساس تولید آنالیزهای مکانی را به همراه خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Rapid assessment of natural disaster damage based on voluntary geographic information (Study area: Masjed Soleiman earthquake)

نویسندگان [English]

  • Hadi Fadaei 1
  • Mansour Bayazidi 2
1 Assistant Professor, Ph.D in Remote Sensing in Natural Resources -Amin Police University.
2 Master of Remote Sensing and Geographic Information System
چکیده [English]

Damage estimates based on predetermined models and field visits have many shortcomings because they require a lot of time and money. Therefore, in this research, an attempt has been made to develop a web-based system for collecting voluntary geographical information during an earthquake, which allows users to quickly share information about financial and human losses caused to themselves or other people during an earthquake. They provide information to the crisis management team for analysis. In this research, to classify the classified map of damage, based on the amount of damage reported by the people, it has been used. To evaluate the results, the system was implemented in the city of Masjed Soleyman, where the recent earthquake occurred, and 132 people participated in data collection. Data validation was performed using the damage map and the accuracy and accuracy of the verification was significantly increased and according to this method, 76.76% of the correct information was considered. The results of this study show that the use of voluntary geographic information improves 83% of the estimated damage rate and reduces costs by 75% compared to existing methods. In addition, the results show that the implementation of these systems in any organization, in addition to significantly increasing the speed of data collection, will reduce the time of data analysis based on the production of spatial analysis.

کلیدواژه‌ها [English]

  • "Voluntary Geography Information"
  • " Earthquake"
  • "Web maps"
  • "Collect information online
-  Amarnath, M. (2012). Home-Appliance Control using Mobile Cloud Technology in Web.2.0 Platform[. Procedia Engineering, 38, 3587-3595.
 
-  Bimonte, S., Boucelma, O., Machabert, O., & Sellami, S. (2014). A new Spatial OLAP approach for the analysis of Volunteered Geographic Information. Computers, Environment and Urban Systems, 48, 111–123. doi:10.1016/j.compenvurbsys.2014.07.006
 
-  Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M., & Rampini, A. (2014). A linguistic decision making approach to assess the quality of volunteer geographic information for citizen science. Information Sciences, 258, 312-327. doi:10.1016/j.ins.2013.07.013
 
-  Brovelli, M. A., Minghini, M., & Zamboni, G. (2016). Public participation in GIS via mobile applications. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 306-315.
doi:10.1016/j.isprsjprs.2015.04.002
 
 
-  Corbane, C., Saito, K., Dell’Oro, L., Bjorgo, E., Gill, S. P. D., Emmanuel Piard, B., … Eguchi, R. T (2011). A Comprehensive Analysis of Building Damage in the 12 January 2010 Mw7 Haiti Earthquake Using High-Resolution Satelliteand Aerial Imagery. Photogrammetric Engineering & Remote Sensing, 77(10),
997-1009.
 
-  Deng, Q., Liu, Y., Zhang, H., Deng, X., & Ma, Y. (2016). A new crowdsourcing model to assess disaster using microblog data in typhoon Haiyan. Natural Hazards, 84(2), 1241-1256. 
 
-  Flanagin, A. J, & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72(3-4), 137-148.
 
-  Flavio E. A; Horita, João P. de Albuquerque (2013). An Approach to Support Decision Making in Disaster Management based on Volunteer Geographic Information (VGI) and Spatial Decision Support Systems (SDSS),Proceedings of the 10th International ISCRAM Conference-Baden- Baden, Germany. Available: https://www.researchgate.net/publication/236838364
 
-  Foster, A., & Dunham, I. M. (2015). Volunteered geographic information, urban forests, & environmental justice. Computers, Environment and Urban Systems, 53, 65-75. doi:10.1016/j.compenvurbsys.2014.08.001
 
-  Gamba, P., & Casciati, F. (1998). GIS and image understanding for near-real-time earthquake damage assessment.Photogrammetric engineering and remote sensing, 64, 987-994.‏Available:
 
-  Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial Statistics, 1, 110-120.
 
 
-  Goodchild, M.F, (2008). Commentary: whither VGI? GeoJournal72:239-244,
 
-  Hand, E. (2010). Citizen science: People power. Nature, 466(7307), 685-687.
 
-  Haworth, B. (2016). Emergency management perspectives on volunteered geographic information: Opportunities, challenges and change. Computers, Environment and Urban Systems, 57, 189-198.
doi:10.1016/j.compenvurbsys.2016.02.009
 
-  Huang, Y.-M., Chen, M.-Y., & Mo, S.-S. (2015). How do we inspire people to contact aboriginal culture with Web2.0 technology? Computers & Education, 86, 71-83.
 
-  Kankanamge, N., Yigitcanlar, T., Goonetilleke, A., & Kamruzzaman, M. (2019). Can volunteer crowdsourcing reduce disaster risk? A systematic review of the literature. International Journal of Disaster Risk Reduction, 101097. 
 
-  Kerle, N., Stekelenburg, R., van den Heuvel, F., & Gorte, B. (2005). Near-Real Time Post-Disaster Damage Assessment with Airborne Oblique Video Data. Geo-Information for Disaster Management, 337-353. 
 
-  Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J., & Cebrian, M. (2016). Rapid assessment of disaster damage using social media activity. Science Advances, 2(3), e1500779-e1500779.
 
-  Kunze, C, & Hecht, R. (2015). Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Computers, Environment and Urban Systems, 53, 4-18.
 
 
-  Melani, A., Khare, R. K., Dhakal, R. P., & Mander, J. B (2016). Seismic risk assessment of low rise RC frame structure. Structures, 5,13-22.
 
Poser, K., Dransch, D (2010): Volunteered geographic information for disaster management with application to rapid flood damage estimation. - Geomatica, 64, 1, 89-98. Avalible: https://www.researchgate.net/publication/265619198
 
-  Rajabifard, A., Feeney, M.-E. F., & Williamson, I. P (2002). Future directions for SDI development. International Journal of Applied Earth Observation and Geoinformation, 4(1), 11-22.
 
-  Scassa, T. (2012). Legal issues with volunteered geographic information. The Canadian Geographer/Le Géographe Canadien,57(1),1-10.
 
-  Shanley, L., Burns, R., Bastian, Z., & Robson, E. (2013). Tweeting Up a Storm: The Promise and Perils of Crisis Mapping. SSRN Electronic Journal.
 
-  Spinsanti, L., & Ostermann, F. (2013). Automated geographic context analysis for volunteered information. Applied Geography, 43, 36-44.
 
-  Yuan, F., & Liu, R. (2018). Feasibility study of using crowdsourcing to identify critical affected areas for rapid damage assessment: Hurricane Matthew case study. International Journal of Disaster Risk Reduction, 28, 758-767.