مقایسه دو روش طبقه¬بندی حداکثر احتمال و شبکه¬ی عصبی مصنوعی در استخراج نقشه¬ی کاربری اراضی مطالعه موردی: حوزه سد ایلام

نوع مقاله: مقاله پژوهشی

نویسنده

کارشناس ارشد آبخیزداری

چکیده

یکی از ضروری‌ترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشه‌های کاربری اراضی می‌باشد. داده‌های ماهواره‌ای، به جهت ارایه­ی اطلاعات به هنگام و رقومی، تنوع اشکال و امکان پردازش در تهیه­ی نقشه­های کاربری اراضی از اهمیت بالایی برخوردارند. از سویی دیگر در سال­های اخیر به طور وسیع و گسترده جهت طبقه­بندی تصاویر ماهواره­ای از روش­های طبقه­بندی پیشرفته از قبیل شبکه­های عصبی مصنوعی، مجموعه­های فازی و سیستم­های هوشمند استفاده می­شود. هدف اصلی این تحقیق مقایسه­ی دو روش مختلف جهت طبقه­بندی کاربری اراضی با استفاده از تصاویر ASTER می­باشد. بدین منظور  با استفاده از تصویر ماهواره­ای ASTER  و دو الگوریتم طبقه­بندی نظارت­شده شامل حداکثر احتمال و شبکه­ی عصبی مصنوعی، نقشه­ی کاربری اراضی تهیه گردید. در طبقه­بندی با استفاده از الگوریتم شبکه­ی عصبی از یک ­شبکه­ی پرسپترون با یک لایه­ی پنهان و 14 نرون ورودی، 9 نرون میانی و 6 نرون خروجی استفاده شده است که تعداد نرون­های ورودی همان تعداد باندهای تصویر ماهواره­ای ASTER و تعداد نرون­های خروجی همان تعداد کلاس­های نقشه­ی کاربری اراضی می­باشد. برای آموزش شبکه نیز از الگوریتم انتشار برگشتی استفاده شده است. نتایج حاصل از ارزیابی دقت این دو روش با استفاده از تعیین ضریب کاپا نشان داده است که الگوریتم شبکه­ی عصبی با ضریب 86/0 نسبت به الگوریتم حداکثر احتمال با ضریب 69/0 از دقت بیشتری برخوردار است. نتایج این مطالعه همچنین نشان می­دهد الگوریتم­­های سنتی طبقه­بندی مانند روش­های آماری به ­خاطر انعطاف­پذیری پایین و انواع پارامتریک آن مانند روش حداکثر احتمال به­خاطر وابستگی به مدل آمار گوسی نمی­توانند نتایج بهینه­ای، در صورت نرمال نبودن داده­های آموزشی فراهم آورند در حالیکه دلیل موفقیت الگوریتم شبکه­ی عصبی مصنوعی در سنجش از دور این است که می­تواند داده­هایی با منابع مختلف را با هم تلفیق نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Comparibson Between two Classification Methods of Maximum likelihood and Artificial Neural Network for Providing Land use Maps Case Study: Ilam Dam Area

نویسنده [English]

  • yagob niazi
چکیده [English]

One of the most necessary information required by the managers and custodians of natural resources are land use maps. Satellite data, for owning characteristics such as presenting on time and digit information, variable forms and process ability have a great role in providing land use maps. In the other hand, during the recent years, advanced classification methods including artificial neural networks, fuzzy sets and intelligent systems are widely used for classification of satellite photos. The main objective of this research would be comparing the two different methods of classification for land use by the use of ASTER photos. For this reason, by using ASTER satellite photos and two supervised classified algorithms including maximum likelihood and artificial neural network, the land use map was prepared. In classification with neural network algorithm, a Perceptron network with a hidden layer, 14 input neurons ‘9 middle neurons and 6 output neurons have been used for classification by neural network algorithm, in which the number of input neurons are the same number of ASTER satellite photo bands and the number of output neurons are the same number of classes for land use map. For network training, back propagation algorithm has been used.
The results obtained from accuracy evaluation of these two methods by the use of Kappa coefficient showed that neural network algorithm with coefficient 0.86 in comparing with  maximum likelihood algorithm with coefficient 0.69 was more accurate. The results of this study show that traditional classification algorithms like statistical methods for its low flexibility and its different parametric types like maximum likelihood methods for their depending on Gaussian model cannot provide optimized results in case of abnormality of educational data, while the reason of success of artificial neural network algorithm in remote sensing is that it is able to integrate data with different resources.
 

کلیدواژه‌ها [English]

  • Land Use
  • Photo classification
  • Artificial neural network
  • Maximum likelihood
  • Kappa coefficient.