واکاوی وردایی زمانی- مکانی ارتفاع لایۀ ‌‌مرزی ایران مبتنی ‌بر برونداد پایگاه داده مرکز پیش‌‌بینی میان‌‌مدت هواسپهر اروپایی (ECMWF)

نویسندگان

1 دانشیار آب و هواشناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری آب و هواشناسی شهری، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 دکتری آب و هواشناسی کشاورزی، دانشکده جفرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

لایه مرزی بخش کوچکی از لایه ورد سپهر است که به دلیل فرایندهایی که در داخل آن رخ می‌دهد، برای حیات انسان حائز اهمیت می-باشد. مطالعه حاضر با هدف واکاویی دگرگونی زمانی- مکانی ارتفاع لایه مرزی با رویکردی آماری – تحلیلی انجام شد. در این راستا از داده‌های ارتفاع لایه مرزی مرکز پیش بینی میان مدت هواسپهر اروپایی نسخه ERA-Interim با تفکیک مکانی 125/0×125/0 درجه قوسی و بازه زمانی 1979 تا 2015 استفاده گردید. نتایج نشان داد که ارتفاع لایه مرزی با زمان و مکان تغییر می‌کند و وضعیت توپوگرافی بر ارتفاع لایه مرزی تأثیر جدی می‌گذارد. براساس میانگین بلند مدت، بیشینه همبستگی ارتفاع لایه مرزی ایران با مولفه مکانی عرض جغرافیایی می‌باشد، چرا که نقش این مشخصه جغرافیایی با آفتاب گیری بسیار بالاست. از نظر زمانی کمینه و بیشینه ارتفاع لایه مرزی در ایام سرد و گرم سال به ترتیب در ماههای ژانویه و ژوئن رخ میدهد. از نظر آرایش مکانی مناطق با چشم‌انداز مرتفع و ناهموار مانند مناطق مرتفع زاگرس و نواحی مجاور دریا دارای کمترین ضخامت لایه مرزی و مناطق با چشم‌انداز هموار و بیابانی مانند نواحی داخلی بخصوص جنوب شرق و مرکز ایران، ضخامت لایه مرزی در بالاترین سطح قرار دارد. تغییرات فضایی ارتفاع لایه مرزی در ماههای سرد سال منسجم‌تر از ماههای گرم سال می‌باشد. متناسب با تغییرات فصلی دمای هوا، بیشینه ارتفاع لایه مرزی در ماههای سرد سال در نواحی جنوب شرق ایران و در ایام گرم سال بخصوص ماههای ژوئن و جولای، در نواحی مرکزی ایران مانند مناطق جنوب کرمان شمال استان هرمزگان رخ می‌دهد. ساختار دمایی ایران متناسب با وضعیت جغرافیایی و توپوگرافیکی، الگوی زمانی – مکانی ارتفاع لایه مرزی در ایران را مشخص می‌کند. براساس نتایج نوشتار حاضر عامل اصلی تغییرات زمانی - مکانی ارتفاع لایه مرزی گرمایش و سرمایش سطح زمین و مولفه‌های مکانی و توپوگرافیکی در سطح زمین میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of spatio-temporal changes of the boundary layer height based on output European Centre for Medium-Range Weather Forecasts (ECMWF)

نویسندگان [English]

  • Mahmoud Ahmadi 1
  • abasali dadashiroudbari 2
  • Hamzeh Ahmadi 3
1 Associate Professor of climatology Shahid Beheshti University
چکیده [English]

This study statistical approach - analytical, with the aim of analyzing change was spatiotemporal height of the boundary layer (BLH) were the order of the height of the boundary layer of the European Centre for Medium-Range Weather Forecasts (ECMWF) version of the ERA-Interim with spatial resolution 0/125 ° × 0/125 ° arc period 1979 to 2015 were used. The results showed that the pace of change when boarding height of the boundary layer influenced by the pace of change and seasonal temperature pattern on the one hand and the components of latitude and altitude is. When the maximum height of the boundary layer in June and a minimum height of boundary layer occurs in January. The furnishing and rugged Zagros highlands and desert areas Sawwah has a minimum thickness of the boundary layer and smooth inner regions, especially South-East and Central regions of Iran, the thickness of the boundary layer is at the highest level. Changes in the boundary layer height space in the cold months is more consistent warmer months. Adjacent coastal areas and the sea because the sea moderating role in the temperature always have the minimum thickness of the boundary layer. In the cold months the maximum height of the boundary layer in the southern part of East and especially during the hot months of June and July in the western region and northern and southern Kerman province to be drawn.

کلیدواژه‌ها [English]

  • boundary layer height (BLH)
  • base ECMWF
  • version ERA-Interim
  • Iran

-  دارند، محمد؛ سوما زندکریمی (1394). واکاوی سنجش دقت زمانی- مکانی بارش پایگاه دادۀ مرکز پیش‌‌بینی میان‌‌مدت جوّی اروپایی (ECMWF) بر روی ایران زمین، پژوهش‌‌های جغرافیای طبیعی. دورۀ 47. شمارۀ 4. صفحات 675-651.

-   فلاح قالهری، غلام‌عباس(1393).آب و هوای لایۀ‌مرزی، انتشارات دانشگاه حکیم سبزواری، سبزوار، 403ص.

-    Ahlgrimm, M., & Forbes, R. (2014). Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores. Monthly Weather Review, 142(2), 668-685.

-    Ahlgrimm, M., & Randall, D. A. (2006). Diagnosing monthly mean boundary layer properties from reanalysis data using a bulk boundary layer model. Journal of the atmospheric sciences, 63(3), 998-1012.

-    Baklanov, A., Mestayer, P. G., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., & Nielsen, N. W. (2008). Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description. Atmospheric Chemistry and Physics, 8(3), 523-543.

-    Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216-240.

-    Chemel, C., & Sokhi, R. S. (2012). Response of London’s urban heat island to a marine air intrusion in an easterly wind regime. Boundary-layer meteorology, 144(1), 65-81.

-    Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y.,& Wang, F. (2013). Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China.Aerosol Air Qual Res,13,1598-1607.

-    Dupont, J. C., Haeffelin, M., Badosa, J., Elias, T., Favez, O., Petit, J. E., ... & Bonne, J. L. (2016). Role of the boundary layer dynamics effects on an extreme air pollution event in Paris. Atmospheric Environment, 141, 571-579.

-    Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., ... & Zhai, P. (2016). The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys, 16(20), 13-309.

-    Jiang, Q., Doyle, J. D., & Smith, R. B. (2006). Interaction between trapped waves and boundary layers. Journal of the atmospheric sciences, 63(2), 617-633.

-    Jiang, Q., Smith, R. B., & Doyle, J. D. (2008). Impact of the atmospheric boundary layer on mountain waves. Journal of the Atmospheric Sciences, 65(2), 592-608.

-    Köhler, M., Ahlgrimm, M., & Beljaars, A. (2011). Unified treatment of dry convective and stratocumulus‐topped boundary layers in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 137(654), 43-57.

-    Letzel, M. O., & Raasch, S. (2003). Large eddy simulation of thermally induced oscillations in the convective boundary layer. Journal of the atmospheric sciences, 60(18), 2328-2341.

-    Liu, J., Huang, J., Chen, B., Zhou, T., Yan, H., Jin, H., ... & Zhang, B. (2015). Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China. Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 102-112.

-    Liu, S., & Liang, X. Z. (2010). Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21), 5790-5809.

-    Sarkar, A., & De Ridder, K. (2011). The urban heat island intensity of Paris: a case study based on a simple urban surface parametrization. Boundary-layer meteorology, 138(3), 511-520.

-    Scorer, R. S. (1949). Theory of waves in the lee of mountains. Quarterly Journal of the Royal Meteorological Society, 75(323), 41-56.

-    Seidel, D. J., Ao, C. O., & Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16).

-    Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W,&Dee,D.P (2010). Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research: Atmospheres, 115 (D1).

-    Smith, C. M., & Skyllingstad, E. D. (2009). Investigation of upstream boundary layer influence on mountain wave breaking and lee wave rotors using a large-eddy simulation. Journal of the Atmospheric Sciences, 66(10), 3147-3164.

-    Smith, R. B. (2007). Interacting mountain waves and boundary layers. Journal of the atmospheric sciences, 64(2), 594-607.

-    Stull, R. B. (2012). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media. Van Dam, B., Helmig, D., Neff, W,& Kramer, L. (2013). Evaluation of boundary layer depth estimates at Summit Station, Greenland. Journal of Applied Meteorology and Climatology, 52(10), 2356-2362.

-    Von Engeln, A., & Teixeira, J. (2004). A ducting climatology derived from the European Centre for Medium‐Range Weather Forecasts global analysis fields. Journal of Geophysical Research: Atmospheres, 109 (D18).

-    Von Engeln, A., & Teixeira, J. (2013). A planetary boundary layer height climatology derived from ECMWF reanalysis data. Journal of Climate, 26(17), 6575-6590.

-    Wouters, H., Ridder, K. D., Demuzere, M., Lauwaet, D., & van Lipzig, N. P. M. (2013). The diurnal evolution of the urban heat island of Paris: a model-based case study during summer 2006. Atmospheric Chemistry and Physics, 13(17), 8525-8541.

-    Zhang, Y., Seidel, D. J., & Zhang, S. (2013). Trends in planetary boundary layer height over Europe. Journal of Climate, 26(24), 10071-10076.