واکاوی نقش دمای رویۀ زمین در پراکنش پوشش برف در ایران به کمک داده‌های ماهواره‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقلیم‌شناسی، دانشکدۀ علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان، ایران

2 استاد اقلیم‌شناسی، دانشکدۀ علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان، ایران

چکیده

هدف از پژوهش کنونی، بررسی نقش دمای رویۀ زمین در پراکنش روزهای برف‌پوشان در ایران است. در گام نخست داده­های دمای رویۀ زمین سنجندۀ مودیس ماهوارۀ ترا از تارنمای ناسا برای بازۀ زمانی 1393-1382 در تفکیک مکانی 1×1 کیلومتری دریافت شد. برای بررسی پوشش برف کشور نیز از داده­های سنجندۀ مودیس ترا و مودیس آکوا برای بازۀ زمانی 1393-1382 در تفکیک مکانی
500 × 500 بهره گرفته شد. پس از آماده­سازی داده­ها در محیط نر­م­افزار مت­لب، به کمک مدل رقومی‌ارتفاع (Dem) ایران برای هر یک از گروه­های ارتفاعی در گام­های ارتفاعی یک متری میانگین سالانۀ دما محاسبه شد. یافته­های این پژوهش نشان داد، مناطقی که میانگین سالانۀ دمای رویۀ آن­ها کمتر از 30 درجۀ سلسیوس است، برای نشست پوشش برف به‌طور نسبی مهیا هستند و از ارتفاع 1700 به بالا دمای رویۀ زمین در ایران به کمتر از 30 درجۀ سلسیوس می­رسد. واکاوی پیوند میان شمار روزهای برف‌پوشان با میانگین دمای رویۀ زمین آشکار ساخت، دمای رویۀ زمین در مناطقی از ایران که به طور میانگین هیچ گونه پوشش برفی ندارد، 37 درجۀ سلسیوس است و بیشترین شمار روزهای برف‌پوشان در کشور در مناطقی است که میانگین سالانۀ دمای رویۀ آن­ها صفر درجۀ سلسیوس است.

کلیدواژه‌ها


عنوان مقاله [English]

Exploring the Role of Land Surface Temperature on Distribution of Snow Coverage in Iran by Remote Sensing Data

نویسندگان [English]

  • MohamadSadegh Keikhosravi Kinay 1
  • Seyed Abolfazl Masoudian 2
چکیده [English]

The aim of this study is to explore the role of land surface temperature on distribution of snow-covered days in Iran. Firstly, the land surface temperature data were obtained from NASA for 2003 to 2014 in the spatial resolution of 1×1 km. MODIS Terra and MODIS Aqua data were also downloaded from 2003 to 2014 in the spatial resolution of 500 * 500. After preparation of the data in MATLAB software, Digital Elevation Model of the country was applied to calculate the annual LST for each of the elevations grouped by 1 meter. The findings of this study revealed that in the extents of the country which annul LST is below 30 º C the environmental condition is suitable for the accumulation of snow cover. And it was also found that the LST is 30 º C for the elevations above 1700 m. findings also revealed that there is no snow-covered day for the extents that LST is 37 º C and the most number of snow-covered days can be seen in the regions that LST is 0 º C.

کلیدواژه‌ها [English]

  • Land Surface Temperature
  • Snow-covered days
  • MODIS Terra
  • MODIS Aqua
  • Iran

Micro-scale spatial variability and the timing of snow melt runoff Anderton, S. P., White, S.M., Alvera, B (2002). in a high mountain catchment. Journal of Hydrology. 268, 158-176.

Bergeron, J., Royer, A., Turcotte, R., Roy, A (2013). Snow cover estimation using blended MODIS and AMSR-E data for improved watershed-scale spring streamflow simulation in Quebec, Canada. Hydrological Processes. 28, 4626-4639.

Blöschl,G(1999).Scaling issues in snow‌hydrology. Hydrological Processes. 13, 2149-2175.

Brown R., Armstrong R. L (2010). Snow-cover data measurement, products and sources in snow and climate. In Physical Processes, Surface Energy Exchange and Modeling, Armstrong RL, Brun E (eds). Cambridge University Press: Cambridge, UK.

Coll, C., Caselles, V., Galve, J. M., Valor, E., Niclos, R., Sanchez, J. M., and Rivas (2005). Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment. 97,288-300.

Crosman, E. T., Horel, J. D (2009). MODIS-derived surface temperature of the Great Salt Lake, Remote Sensing of Environment.113,73-81

de Ruyter de Wildt M, Seiz G., Grun A (2006). Snow mapping using multi-temporal Meteosat-8 data.Earsel Eproceedings.5,18-31.

Dietz, A., Kuenzer, C., Conrad, C (2013). Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing. 34, 3879-3902.

Dietz, A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S (2014). Identifying Changing Snow Cover Characteristics in Central Asia between 1986 & 2014 from Remote Sensing Data. Remote Sensing.6,12752-12775.

Gafurov, A.,  Bardossy, A (2009). Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Science. 13,1361-1373.

Galve, J. M., Coll, C., Caselles, V., Valor, E., Niclos, R., Sanchez, J. M., Mira, M (2007). Simulation and validation of land surface temperature algorithms for MODIS and AATSR data. Tethys. 4, 27-32.

Hall, D. K., Kelly R. E., Foster J., Chang A. T  (2005). Estimation of snow extent and snow properties. In Encyclopedia of Hydrological Sciences, Anderson MG (ed). Chichester: John Wiley and Sons, Ltd. 2, 811-830.

Hall, D. K., Riggs G. A., Foster J. L., Kumar S. V (2010). Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment. 114, 496-503.

Hall, D. K., Riggs, G. A (2007). Accuracy assessment of the MODIS snow-cover products. Hydrological Processes.21, 1534-1547.

Harshburger, B., Humes, K., Waldon, V., Blandford, T., Moore, B., Dezzani, R (2010). Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow- covered areas.Hydrological Processes.24, 1285-1295. 

Hook,S. J., Vaughan, R. G., Tonooka, H., Schladow, S. G (2007). Absolute radiometric inflight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra Spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. ieee geoscience remote sensing. 45, 1798-1807.

Immerzeel, W, Droogers, P., Jong, S., Bierkens, M (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment. 113, 40-49.

Khadka, D., Babel, M., Shrestha, S., Tripathi, N (2014). Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. Journal of Hydrology. 511, 49-60.

Ke,C., Liu, X (2014). MODIS-observed spatial and temporal variations in snow cover in Xinjiang, China. Climate Research. 59, 15-26.

Klein, A. G., Stroeve, J (2002). Development and validation of a snow albedo algorithm for the MODIS instrument.Annals of Glaciology.34,45-52.

Langer, M., Westermann, S., Boike, J (2010). Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia- implications for MODIS LST based permafrost monitoring. Remote Sensing of Environment. 114, 2059-2069.

Lehning, M., Löwe, H., Ryser, M., Raderschall, N (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resources Research. 44, 1-19.

Manes, C., Guala, M., Löwe, H., Bartlett, S., Egli, L., Lehning, M (2008). Statistical properties of fresh snow roughness. Water Resources Research. 44, 1-9.

Mir, R. A., Jain, S. K., Saraf, A. K., Goswami, A (2015). Accuracy assessment and trend analysis of MODIS derived data on snow-covered areas in the Sutlej basin, Western Himalayas. International Journal of Remote Sensing. 36, 3837-3858.

Mishra, B., Babel, M., Tripathi, N (2014). Analysis of climatic variability and snow cover in the Kaligandaki River Basin, Himalaya, Nepal. Theoretical & Applied Climatology.116,681- 694.

Parajka, J., Bloschi, G  (2008). The value of MODIS snow cover data in validating and calibrating conceptual hydrological models. Journal of Hydrology, 358: 240-258.

Paudel, K., Andersen, P (2011). Monitoring snow cover variability in an agro pastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sensing of Environment. 115, 1234-1246.

Pu, Z., Xu, L (2009). MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation & possible connection with the East Asian Summer Monsoon. Theoretical and Applied Climatology. 97, 265-278.

Romanov P, Tarpley D, Gutman G, Carroll TR (2003). Mapping and monitoring of the snow cover fraction over North America. Journal of Geophysical Research. 108, 1-14.

She,J. Zhang,Y.Li, X , Chen, Y(2014). Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote sensing data. International Journal of Remote Sensing. 35, 234-252.

Singh,S., Rathore, B., Bahuguna, I., Ajai (2014). Snow cover variability in the Himalayan- Tibetan region. International Journal of Climatology. 34, 446-452.

Tani, M (1996). An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent. Journal of Hydrology. 183, 205-225.

Wan, Z., Zhang, Y., Li, Z. L., Wang, R., Salomonson, V. V., Yves, A., Bosseno, R.,  Hanocq, J. F (2002). Preliminary estimate of calibration of the Moderate ResolutionImaging Spectroradiometer thermal infrared data using Lake Titicaca. Remote Sensing of Environment. 80, 497-515.

Wan,Z.,Zhang, Y., Zhang, Q & Li Z.-L (2004). Quality assessment and validation of the MODIS global land surface temperature, International Journal of Remote Sensing. 25, 261-274.

Wan, Z  (2008). New refinements and validation of the MODIS land surface temperature/ emissivity products. Remote Sensing of Environment. 112, 59-74.

Westermann, S., Langer, M., & Boike, J (2011). Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard-Implications for MODIS LST based permafrost monitoring. Remote Sensing of Environment. 115, 908-922.

Yang, J., Zhao, Z., Ni J., Ren, L., Wang, Q (2012).Temporal and spatial analysis of changes in snow cover in western Sichuan based on MODIS‌images.Earth Sciences.55,1329-1335.

Yuang,D.,Woo,M. K (1999). Representativeness of local snow data for large scale hydrologic investigations.Hydrological Processes. 13, 1977-1988.

Zhang, G., Xie, H., Yao, T., Liang, T., Kang, S (2012). Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001-2010). Water resources research. 48, 1-22.

Zhao, H., Fernandes, R (2009). Daily snow cover estimation from advanced very high resolution radiometer polar pathfinder data over Northern Hemisphere land surfaces during 1982–2004. Journal of Geophysical Research, 114, 1-14.