تحلیل ارتباطات بین متغیّرهای فضایی در دشت خان‌میرزا: مقایسه‌ی کارایی الگوی رگرسیون وزنی جغرافیایی و الگوی حداقل مربعات معمولی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی فضای سبز، دانشگاه سیدجمال‌الدین اسدآبادی، همدان، ایران

2 دانشگاه سید جمال الدین اسدآبادی

3 کارشناس ارشد مدیریت و برنامه‌ریزی محیط زیست، دانشگاه تهران، تهران، ایران

چکیده

بطور متداول، برای درک ارتباطات فضایی بین متغیّرها محققان علوم محیط‌زیست و جغرافیا از الگوهایی چون رگرسیون حداقل مربعات معمولی‌ (OLS) بهره می‌گیرند که دارای کاستی‌های بسیاری در ارائه‌ی نتایج فضایی بویژه در مقیاس محلی است. محققان در سال‌های اخیر الگوی رگرسیونی وزنی جغرافیایی‌(GWR) به منظور درک روابط بین متغیّرهای فضایی در سطح محلی پیشنهاد داده‌اند. در این تحقیق به منظور مقایسه‌ی کارایی این الگوها، میزان تغییرات کاربری اراضی‌ (به عنوان متغیّر وابسته) در رابطه با تغییرات افت و برداشت از منابع آب زیرزمینی‌ (به عنوان متغیّرهای مستقل) در دوره زمانی 1379 تا 1389 در در دشت خان‌میرزا‌ (استان چهارمحال و بختیاری) مورد بررسی قرار گرفته است. به منظور بررسی کارایی الگوها از ضریب تغییرات باقیمانده‌های استاندارد‌شده، وابستگی‌های محلی فضایی، شاخص مورن، معیار اطلاعات اکائیک تصحیح‌شده و ضریب تبیین محلی بهره گرفته شد. نتایج تحقیق نشان داد بر اساس ضریب تغییرات استاندارد شده، الگوی GWR قابلیت انطباق داده‌ها را نسبت بهOLS  را دارا است. همچنین بر اساس نتایج ضریب تبیین بر روی متغیّرهای تحقیق، الگوی GWRبرازش محلی مطلوبی را بین نقاط رگرسیونی و نمونه‌‌ای برقرار می‌کند. بر اساس شاخص مورن، الگوی GWR کمترین شباهت مقداری و مکانی را درموقعیت‌های مجاور داده‌های نمونه‌‌ای نشان می‌دهد و کارامدی الگوی GWR در ارائه‌ی خروجی‌های فضایی در برابر الگوی OLS را اثبات می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the Relations Between Spatial Variables in Khanmirza Plain: Comparison of Geological Weighted Regression and Ordinary Least Square Models

نویسندگان [English]

  • Sajjad Shamshiri 1
  • Habib Shahbazi 2
  • Shahabodin Taghipour Javi 3
چکیده [English]

Usually environmental science and geography researcher use OLS model for variable spatial relations analyzing. This model has some lacks and shortagea in spatial outcome especially in local scale. In recent years, GWR model are used by some scientists for analyzing  the relation of spatial variables in local scale. In this article, for analyzing and comparison of these models, land use change (as dependent variable) are assessed in relation with drawdown and withdrawal of groundwater resources (as independent variable) in years of 2001-2011 in Khanmirza Plain (Chaharmahal va bakhtiari province). In order to study the models efficiency,  the Standardized  residual variation's coefficient, Spatial Local dependencies, Morn’s Index, Corrected Akaike Information Criterion and Local coefficient of determinationwere used. Result indicate that based on Standardized  residual coefficient of variation, GWR model has better ability to adopt data on variables respect to OLS. The findings of the research showed that based on the standardized coefficient of variations, GWR model has the  ability  to adapt data  than OLS. Also, based on the results of the explanation coefficient on the variables of the research, GWR model creates a favorable local fit between regression and sample points. Based on Morrow index, GWR pattern represents the least similarity of the amount and location in the adjacent positions of the data samples and prows the performance of GWR model in providing spatial outputs relative to the OLS pattern

کلیدواژه‌ها [English]

  • GWR
  • OLS
  • Land use changes
  • Quantitative changes of underground water resources
  • Khanmirza plain

تقی‌پورجاوی، شهاب‌الدین؛ بهرام ملک‌محمدی؛ سجاد شمشیری ‌(1392). آثار و عوامل محیط‌زیستی تغییرات کاربری اراضی و برداشت منابع آب زیرزمینی دشت خان‌میرزا، اولین همایش ملّی حفاظت و برنامه‌ریزی محیط‌زیست.

کسرایی، اسرافیل‌‌ (1386). نظریه‌ی همگرایی، وابستگی فضائی و رشد منطقه‌ای‌ (شواهدی از کشورهای عضو سازمان کنفرانس اسلامی به منظور کاربرد)، تحقیقات اقتصادی. شماره 77. صفحات 55- 45.

Andy, M. (2005). The ESRI Guide to GIS Analysis (Vol. 2). ESRI Press.

Brown, S., Versace, V. L., Laurerson, L., Fawcett, J & Salzman, S (1996). Geographically weighted regression: A Method for Exploring Spatial Non-Stationarity. Geographical Analysis,28(4),281-298.

Chatterjee, S & Hadi, A. S. (2006). Regression Analysis By Example (Vol.4).John Wiley&Sons.

Fotheringham, S. A., Brunsdon, C & Charlton, M. (2002). Geographically Weighted Regression the analysis of spatially varying relationships. John Wiley & Sons.

Fotheringham, S. A., & Brunsdon, C. (1999). Local forms of spatial analysis. . Geographical Analysis, 31, 340-358.

Fotheringham, S. A., Charlton, M., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environmental Planning, 30(11), 1905-1927.

Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied Geography, 31, 292-302.

Man, P. S. (2006). Comparison of Ordinary Least Square Regression, Spatial Autoregression, and Geographically Weighted Regression for Modeling Forest Structural Attributes Using a Geographical Information System(GIS)/Remote Sensing(RS) Approach. University of Calgary, Department of Geography. Calgary, Alberta: Msc Thesis.

 

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2001). Introduction to Linear Regression Analysis (Vol. 3). John Wiley & Sons.

Motiee , H., Ghadri, M., Nasiri , H., & Taghipour Javi, S (2015). Spatial and temporal variability analysis of groundwater quantity to land use/land cover change in the Khanmirza agricultural plain, Iran. Arabian Journal of Geosciences, 8 (10), 8385- 8397.

Pineda Jaimes, N. B., Bosque, J., Gómez Delgado, M., & Franco Plata, R. (2010). Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30(4), 576-591.

Pratt, B., & Chang, H. (2012). Effects of Land Cover, Topography, and Built Structure on Seasonal Water Quality at Multiple Spatial Scales. Journal of hazardous materials, 48-58.

Propastin, P. (2012). Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 18, 82-90.

Robinson, D. P., Lloyd, C. D., & McKinley, J. M. (2013). Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics. International Journal of Applied Earth Observation and Geoinformation, 374-383.

Su, S., Xiao, R., & Xiao, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32(3), 360-375.

Taghipour Javi, S., Mokhtari, H., Rashidi A, A, & Taghipour Javi,H(2015). Analysis of spatiotemporal relationships between irrigation water quality and geo-environmental variables in the Khanmirza agricultural plain, Iran. Journal of Biodiversity & Environmental Sciences,6,240-252.

Taghipour Javi, S., Fazeli, A., & Kazemi, B. (2016). A case study of desertification hazard mapping using the MEDALUS(ESAs) methodology in southwest Iran. Journal of Natural Resources and Development, 6, 1-8.

Taghipour Javi, S., Malekmohammedi, B., & Mokhtari, H (2014). Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza plain, Iran). Environmental Monitoring and Assessment, 186(5), 3123-3138.

Tu, J (2011). Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography, 31(1), 376-392.

Tu, J., & Xia, Z (2008). Examining Spatially Varying Relationships Between Land Use And Water Quality Using Geographically Weighted Regression I: Model Design And Evaluation. Science of The Total Environment,407(1),358-378.

Zhang, L., Gove, J. H., & Heath, L. S. (2005). Spatial residual analysis of six modeling techniques. Forest Ecology and Management, 189, 317–329.