آزمون مدل مناسب گردش عمومی جو برای پیش¬یابی مقادیر دما و بارش ایران، تحت شرایط گرمایش جهانی دکتر غلامرضا روشن ، دکتر فرامرز خوش¬اخلاق ، دکتر قاسم عزیزی

نوع مقاله: مقاله پژوهشی

10.22111/gdij.2012.274

چکیده

این تحقیق، به منظور آزمون و یافتن بهترین مدل گردش عمومی جو، جهت انطباق با تغییرات دما و بارش ایران در شرایط افزایش گازهای گلخانه­ای انجام گرفته است. بدین منظور، از 20 مدل GCM با استفاده از سناریوی واحدی به نام P50 استفاده شده است. از این رو، با استفاده از نرم افزار MAGICC SCENGEN ، داده های دما و بارش ایران از سال­های 1990- 1961 به عنوان داده­های پایه انتخاب، و تغییرات دما و بارش برای سال­های 2000 تا 2005 ، توسط 20 مدل مورد نظر شبیه­سازی گردید. از جمله نتایج مهم این پژوهش، این است که هیچ کدام از مدل­های گردش عمومی جو، بخوبی نمی­توانند شرایط واقعی تغییرات دما و بارش کشور را شبیه­سازی نمایند.
برای شبیه­سازی بهتر مؤلفه بارش کشور، پیشنهاد می­گردد تا از نتایج ترکیبی مدل­ها استفاده گردد تا صرفاً، از نتایج مربوط به یک مدل خاص. در این تحقیق، با توجه قرار دادن ضرایب همبستگی بین سری واقعی داده­های دما و بارش با داده­های شبیه­سازی شده، نتایج ترکیبی مربوط به مد­ل­های GISS—EH و CNRM-CM3 به عنوان مدل­های مناسب جهت آشکارسازی تغییرات بارش معرفی گردیده و مدل INMCM-30 نیز به عنوان مدل مناسب جهت شبیه­سازی تغییرات دما پیشنهاد می­گردد.
نتایج شبیه­سازی دما و بارش برای سال­های 2025 و2050 توسط مدل­های پیشنهادی، به ترتیب نشان­دهنده­ی افزایش بارش به میزان 5/2 و70/3 درصد و دمای کشور به میزان3/1 و5/2 درجه سلسیوس برای سال­های 2025 و2050 بوده، و طولانی­تر شدن فصل رشد و نمو گیاهان، افزایش تبخیر و تعرق، کاهش بارش جامد، افزایش بارش­های همرفتی و در نهایت افزایش پتانسیل سیلاب، از دیگر آثار این تغییرات اقلیمی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Suitable General Atmosphere Circulation Models for Forecasting Temperature and Precipitation Amounts in Iran Under Condition of Global Warming Dr. GholamReza Roshan Assistant Professor of Climatology University of Golestan, Gorgan Dr. Faramarz Khoshakhlagh Assistant Professor of Climatology University of Tehran Dr. Ghasem Azizi Associate Professor of Climatology University of Tehran

چکیده [English]

Introduction
Exacerbation of the global warming will be inevitable  in the coming decades due to the current pace of emission of greenhouse gases. So that he global warming will have the same impact on either environment and natural flora and fauna or human activities. Due to locating most part of Iran in the arid and semi-arid climate, the study of regimes of temperature and precipitation in Iran under the impact of global warming gains importance. Different methods have been developed to simulate and predict the future climate, the most comprehensive of which is general circulation models (GCM). These models have been developed with the objective of simulating all tree-dimensional properties of the weather. This feature makes these methods the most comprehensive of the atmospheric models of forecasting the future regimes of the weather. Specifying the best model that can prognosticate the future climatic conditions from general circulation models helps develop tools and strategies to prevent wasting of national natural resources and better managing of the risks. With having this in mind, the present paper aims at the examination of the suitable model among the general circulation models to predict the temperature and precipitation values for Iran under the impact of global warming.
 
Research Methodology
The present research has used 20 models of GCM and the unitary scenario of P50, the mean of SRES scenario or emissions scenarios. Temperature and precipitation data for Iran in time of 1961-1990 was selected as the base data and changes in temperature and precipitation for 2000-2005 were investigated according to the proposed scenario and changes in temperature and precipitation for 1961-1990 to develop the suitable model compatible with the experimental data on temperature and precipitation for the proposed period. To this end, to predict and modeling the changes in temperature and precipitation as the result of rise in greenhouse gas emissions, the integrated MAGICC SCENGEN has been used.
 
 
 
Discussions and Results
One of the findings of this research at calculation and interpretation of the real values of temperature and precipitation of country for the period 2000-2005 was identifying the presence of inverse curve of temperature and precipitation during the period of study in such a way that with increase (or decrease) in temperature, a decreasing ( or increasing ) trend of precipitation can e seen. This finding is related to regions of mid-latitudes and sub-tropical regions which have precipitation of cold season. In these latitudes, increase in precipitation (or decrease) coincides with decrease in (or increase) in temperature. The findings of simulated temperature and precipitation for period of 2025 and 2050 indicate an increase in the country’s temperature as 1.24 degrees Celsius for 2025 and 2.44 degrees Celsius for 2050 compared to that in 2005. For example, for regions such as Kerman, Yazd, Sistan and Baluchestan, Hormozgan, and Southern Khorasan experience the maximum increase in temperature. Changes in precipitation for 2025 and 2050 compared to that in 2005 shows an increase of 25.19 and 26.40 percent, respectively. This increase, however is more tangible in regions such as Kerman, Sistan and Baluchestan, and Southern Khorasan, but remember that maximum increase has been predicted for these regions.
 
Conclusion
The findings of the simulation of changes in temperature and precipitation in Iran for the period 2000-2005 indicates that the most suitable model to predict the future values of these parameters is the combined output of two models, GISS-EH  and CNRM-CM3. The findings of each model displays significant correlation with the real data of precipitation compared to other models. According to the higher correlation of INMCM-30 with the real data series of temperature, this model is proposed as most suitable model. The findings show that none of the general circulation models can simulate the real atmospheric conditions of the change in temperature and precipitation, so this fact renders them without any additional merit and credit in better simulation of temperature and precipitation. The interesting point is that the use of integrated models apparently works more effectively than the use of an output model of a GCM model.
 
Keywords: Forecasting, Simulate, GCM model, temperature and precipitation, Iran.
 
References
1-      Babaeian E, Najafe N.Z, Zabol Abbase F, Habbibi Nokhandan M, Adab H, Malbusi Sh (2009). Climate Change assessment over Iran during 2010-2039 by using statistical downscaling of ECHO-G model, Geography and development Iranian journal, No. 16.
2-      Alan M, Haywood A, Mark A, Paul J, Valdes T, Salzmann U, Daniel J, Lun, Harry J, Dowsett R (2009). Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models, Global and Planetary Change ،No. 66.
3-      Azizi GH, Rowshani M (2008). Studying the Climate Changes in the Southern Coasts of the Caspian Sea based on Man-Condal Method, Geographic Research, No.64.
4-      Kont A, Jaagus J, Aunap R (2003). Climate change scenarios and the effect of sea-level rise for Estonia, Global and Planetary Change,No.4.
5-      Grübler A, O'Neill B, Riahi K, Chirkov V, Goujon A, Kolp P, Prommer I, Scherbov S, Slentoe E (2007). Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES,Technological Forecasting & Social Change,No.74.
6-     





 
Assessment of Suitable General Atmosphere Circulation Models for ...
 
 
 
 





Shakiba A, Matkan A (2005). Sensitivity of global soil carbon to different climate change scenarios, Environmental Scienc,No.9.
7-      Kooheki A, Nassiri M, Sharifi H.R, Soltani A, Kamali G.A, Rezvani Moghadam P (2004). Simulation of changes in climatic parameters of Iran under doubled  CO2Concentration using general circulation models, Desert, No.2.
8-      Detlef P, van Vuuren V, Paul L, Lucas R, Hilderink H (2007). downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels, Global Environmental Change, No.17.
9-      Hertig E, Jacobeit J (2008). Downscaling future climate change: Temperature scenarios for the Mediterranean area, Global and Planetary Change ،No.63.
10-   Eitzingera J, tastna M. Sˇ, alud Zˇ, Dubrovsky M (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios,  Agricultural Water Management, No.61.http://www.ucar.edu/legal/terms_of_use.shtml.
11-  Kainuma M, Matsuoka Y, Morita T, Masui T, Takahashi K (2004). Analysis of global warming stabilization scenarios:the Asian-Pacific Integrated Model,Energy Economics,No.26.
12-  Hoogwijk M, Faaija A, Eickhoutb B, Bert de Vries B. D, Turkenburg W (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, Biomass and Bioenergy، No. 29.
13-  Hoogwijk M, Faaij A, Vries B, Turkenburg W (2009). Exploration of regional and global cost–supply curves of biomass energy from short-rotation crop sat abandoned cropland Andres land under four IPCC SRES land-use scenarios, Biomass and Bioenergy, No. 33.
14-  Parrya M.L, Rosenzweig C, Iglesiasc A, Livermored M, Fischere G (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios, Global Environmental Change, No. 14.
15-  van Lieshout M, Kovats R.S, Livermore M.T.J, Martens P (2004). Climate change and malaria: analysis ofthe SRES climate and socio-economic scenarios, Global Environmental Change, No. 14.
16-  Moghbel M (2009). studying the Global warming  Effect on Fluctuations of the Caspian Sea, M.Sc Thesis, by Supervisor of  Prof. Mohammadi, Tehran University.
17-  Arnella N.W, Livermoreb M.J.L, Kovatsc S, Levyd P.E, Nichollse R, Parryf M.L, Gaffing S. R (2004). Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines, Global Environmental Change, No.14.
18-  Nigel W. Arnell (2004). Climate change and global water resources: SRES emissions and socio-economic scenarios, Global Environmental Change, No.14.
19-  Richard S. Lindzen R (1994). ON THE Scientific basis for global warming scenarios, Environmental Pollution, No. 83.
20-  Wigley T. M. L (2000). Stabilization of Co2 concentration levels. (in) The Carbon Cycle, (eds. T. M. L Wigley and D.S Schimel). Cambridge University Press, Cambridge, U.K.
21-  Wigley T. M. L (2006(. A combined mitigation/geoengineering approach to climate stabilization. Science ، No. 18.
22-  Wigley T.M.L, Richels R, Edmonds J.A )1996(. Economic and environmental choices in the stabilization of atmospheric Co2 concentrations. Nature ،No. 17.
 

کلیدواژه‌ها [English]

  • Forecasting
  • Simulate
  • GCM model
  • temperature and precipitation
  • Iran